Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons.

نویسندگان

  • Branden J Cord
  • Jie Li
  • Melissa Works
  • Susan K McConnell
  • Theo Palmer
  • Mary A Hynes
چکیده

Dopaminergic neurons derived from human embryonic stem cells will be useful in future transplantation studies of Parkinson's disease patients. As newly generated neurons must integrate and reconnect with host cells, the ability of hESC-derived neurons to respond to axon guidance cues will be critical. Both Netrin-1 and Slit-2 guide rodent embryonic dopaminergic (DA) neurons in vitro and in vivo, but very little is known about the response of hESC-derived DA neurons to any axonal guidance cues. Here we examined the ability of Netrin-1 and Slit-2 to affect human ESC DA axons in vitro. hESC DA neurons mature over time in culture with the developmental profile of DA neurons in vivo, including expression of the DA neuron markers FoxA2, En-1 and Nurr-1, and receptors for both Netrin and Slit. hESC DA neurons respond to exogenous Netrin-1 and Slit-2, showing an increased responsiveness to Netrin-1 as the neurons mature in culture. These responses were maintained in the presence of pro-inflammatory cytokines that might be encountered in the diseased brain. These studies are the first to evaluate and confirm that suitably matured human ES-derived DA neurons can respond appropriately to axon guidance cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Transdifferentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Dopaminergic Neurons in a Three-Dimensional Culture

Introduction: The induction of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) toward dopaminergic neurons is a major challenge in tissue engineering and experimental and clinical treatments of various neurodegenerative diseases, including Parkinson disease. This study aims to differentiate HUC-MSCs into dopaminergic neuron-like cells. Methods: Following the isolation and charac...

متن کامل

Netrin-1-mediated axon guidance in mouse embryonic stem cells overexpressing neurogenin-1.

Stem cell therapy holds great promise for treating neurodegenerative disease, but major barriers to effective therapeutic strategies remain. A complete understanding of the derived phenotype is required for predicting cell response once introduced into the host tissue. We sought to identify major axonal guidance cues present in neurons derived from the transient overexpression of neurogenin-1 (...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 45 4  شماره 

صفحات  -

تاریخ انتشار 2010